MMP Learning Seminar.

Week 44:

Contents:

- · Birational automorphisms.
- · DCC of volumes.
- · Biratronilly boundedness.

Birational automorphisms of varieties of general type:

Hacon - Mckernm - Xu, 2012.

Theorem 1.1: If n is a positive integer, then there exists a constant con such that the birational automorphism group of a general type vanety X of dimension n

has at most ccn) vol(X, Kx) elements.

Horwitz: |G| = 84 (p-1).

Theorem 1.4. (DCC of volumes): Fix ne Ziso.

D the set of global quotient (X, Δ) where X is a proj

X120: S smooth proj of gen type. |G| \le 422 vol (ks).

Variety of Imension n.

(4) The set { vol(X, Kx+1) | (X,1) = 2) } satisfies the DCC.

Further, there are constants, S>0 and M s.f. if $(X,\Delta)\in \mathbb{D}$. and $Kx+\Delta$ is by Then:

(2) Vol (X, Kx+A) 28 and

(3) \$ NOKA+O) Dirational.

Lop Biralionally Bounded Varieties:

A set of pairs \mathcal{D} is said to be log birationally bounded if there exists (Z,B) a pair with B reduced, and a projective morphism $Z\longrightarrow T$ where T is of finite type, such that for every $(X,\Delta)\in\mathcal{D}$ there exists a closed point $t\in T$ and a birational map $f\colon Z_t\longrightarrow X$ such that supp Bt containts the support of $E_X(f)+f^{\perp}\Delta$.

Lemma 2.3.2: $\emptyset_D: X ---> \mathbb{P}^N$ defined by |D|.

and assume its birational onto its image Z. Then $|Vol(D)| \ge \deg Z$. In particular, |Vol(D)| > 1

Proof: Assume $\not D$ is a morphism, $\not Z$ is non-dependent of degree > 1. From the inclusion $\not S^*$ $(O_{PN}(1))_Z \longrightarrow (O_{\times}(D))$.

we conclude Vol(D) > Vol(Opn(1)/z) = dep Z > 1.

Example (small volume):

Ho, --- Hnor are general hyperplanes.

We have that $(X,\Delta) \in \mathcal{D}$, $\text{vol}(X, K_{\times} + \Delta) = \frac{1}{r_{n+2}^n}$

Theorem 1.8 (Deformation invariance of plurgenera):

Te: X -> T projective morphism of smooth varieties.

$$(X,\Delta)$$
 lop canonical and one over T .

 $m\Delta$ is integral, then $h^{\circ}(Xt, Oxt(m(Kxt+\Delta t)))$ is

independent of to T.

Theorem 1.9 (DCC of volumes on bir bounded): Fix a set $I\subseteq [0:1]$ which satisfies the DCC Let $\mathcal D$ be a set of snc pairs which is birationally bounded. so that for every $(X,\Delta)\in \mathcal D$, coeff $(\Delta)\subseteq L$. Then the set of volumes $\{vol(X,Kx+\Delta) \mid (X,\Delta)\in \mathcal D\}$. satisfies the DCC

Ideas of the proof (1.4).

Tackle Thm (1.4) using similar ideas to AS.

We will try to find a bir bounded family which the same volumes that appear on CIA).

$$(X', \Delta')$$
 are birational to a single variety (Z, B) .

$$(X_1,\Delta_1),\ldots$$
 $f_1:X_1\longrightarrow Z$

X bounded family.

$$K_{x_i} + \Delta_i = f_i^* (K_z + \Phi_i) + E_i \quad \Phi_i = f_o \Delta_i \leq B$$

$$E_i = E_i^+ - E_i^-$$

affect value

Use theory of b-divisors + toroidal blow-ups to prove that

all these volumes computation can be performed in a single Z'->Z.

From (1.4) to (1.1).

Y has dimension in
$$G$$
-equiv

 $G = Bir(Y)$, $Y = --->Y'$, $G = Aut(Y')$.

Replace Y with a G -equivariant resolution Y' .

Now, we assume $G = Aut(Y)$ and Y is smooth

 $Y = Y/G$ by $Y = Y/G$ by $Y = Y/G$

Now, we assume G = Aut(r) and Y is smooth $Y \longrightarrow X = Y/G, \quad K_X + \Delta \quad \text{is} \quad \text{big}.$ $Vol(Y, K_T) = |G| \quad \text{vol}(X, K_X + \Delta) \geq |G| \quad \text{Sn}$

Potentially Birational: X normal projective, D by Q-Cartier, x,y & X very penent assume we can find $0 \le \Delta \sim (1-\epsilon)D$ for some $0 < \epsilon < 1$. where (X,Δ) is not kill at $y \in CX,\Delta$ is label and $\{x\}$ is an lop canonical center. Then, we say that Dis potentially birational. Lemma 2.3.4: X normal 9 p vanety of dim n. D by on X

(1) D is potentially birational
$$\implies \emptyset_{K\times + \lceil D \rceil}$$
 is birational.

(2) \emptyset_D is birational \implies (2n+1) LDJ is potentially bir

(2)
$$\emptyset$$
 D is birational \Longrightarrow (2n+1) LDJ is potentially bir
(3) \emptyset b is birational \Longrightarrow \emptyset Kx+ (2n+1)D is by

Theorem 3.2.5: (X/Δ) KIE, $(X/\Delta + \Delta)$ le around a e

non-kit at y , V non-kit center which contains x.

H ample with $Vol(V, H|_V) > 2K^K$, where $K = J_im V$.

There exists, $H \sim \Delta$, $\Rightarrow 0$, $0 \leq \alpha_1 \leq 1$, so that (X, A + a. A. + a. A.) is around a and non-kill at y and a non-kit center that contains ∞ has $\dim < \kappa$.

Theorem 2.3.6: (X, \(\rightarrow\) kit pzir, where X his dim n. Hample, yo > 1 such that vol(X, yoH) > nn. E>O with the following property: $x \in X$ very general, for every $0 \le \Delta_0 \sim a \lambda H$ 5.4 $(X, \Delta + \Delta_0)$ is to at $x \in A$ and V is a minimal to center containing x. Then $Vol(V, \lambda H|V) > E^k$ where k is the dimension of V and $\lambda > 1$ Then mH is potentially birational, where m = 2 y . (1+ y) =-1 $y = 2n / \epsilon$. Idea: Descending induction on k. Claim: There exists $\Delta_0 \sim \lambda H$ with $1 \le \lambda < 2y_0 (1+y)^{n-1-k}$ with (X, A+ Do) Ical a non-kit aty and a non-klt center V of dim & k contains x.

Properties of birationally bounded families:

Lemma 2.4.2: £, J are classes of varieties (or pain)
of dimension n.

(1) X bir bounded, YT&Y, Yis birational to X&X.

Then \mathcal{J} is bir bounded.

(2) $\forall X \in \mathcal{X}$, there exists D Weil with $\not \circ_D$ birational and

Vol (D) < V. then X is bir bounded.

(3) X is log bir bounded, $Y(Y, \Delta_T) \in J$, there exists $(X, \Delta) \in X \quad \text{with} \quad f: X \longrightarrow Y \quad \text{birational map s.l.}$ $\Delta \quad \text{contains} \quad f_X \Delta_Y \quad \text{and} \quad E_X(f). \quad \text{Then} \quad J \quad \text{is}$

log birationally boundal

(4). \mathcal{X} is log bir bounded $\{X \mid (X \cap \Delta) \in \mathcal{X}\}$ is bir bounded. (5) $(X \cap \Delta) \in \mathcal{X}$, there exists a Weil D, with $\emptyset D: X \longrightarrow \mathbb{P}^{\mathbb{N}}$.

birational onto its image s.t. Kx+m(Kx+1)

Vol (D) \leq V₁ | if $G = E_X (\not p \not p')$ red $+ \not p \not p n \triangle$ red. then $G \cdot H^{n-1} \leq V_2$ where H is the ample defined by D. Then \mathcal{X} is birationally by bounded Birationally bounded pairs:

Theorem 3.1: Fix n, A, S >0. The set of log pair (X, \D) satisfying the following conditions:

(1) X is projective of dim n,

(2) (X, D) is le,

(3) Coeff \(\sigma \sigma \).

(4) there exists me Z>o with vol(X, m(Kx + 1)) < A and

(3) Ø Kx+ m (Kx+a) 15 birational.

Is loo birationally bounded.

Lemma 3.2: X normal proj of dim n. M bpf Carter and pM is birational. Set H = 2Cin+1)M. If D is a sum of distinct prime divisors, then D. H"-1 & 2" vol (X, Kx+D+H). Proof: (X.D) log smooth, comp of D disjoint No component of D is contained in the exceptional of &m M~o A+B, Kx + D+ &B is Ill for S «1. H' (Kx+E+pM)=0, pzo, 120 0 € E € D. (2) of (2.3.4). imply that Kx+D+H=: A1 is bip, so it has an ample model $(Q(m) = h^{\circ}(X_{i}O_{\times}(2mA_{i})).$ Set Am = Kx + D + mH, so HI (D, OD (Am))=0. $P(m) = h^{\circ}(D, O_{D}(A_{m}))$ 15 a polynomizl on m. Leading terms: 2" Vol (Kx+D+H) D. H "-" Cn-1)

te Ho (2m A1 - Am) does not vanish on components of D. We have a commutative diapram. H°(-) ->> H°(-) $0 \longrightarrow (O_{\times}(A_{m}-D)) \longrightarrow (O_{\times}(A_{m})) \longrightarrow (O_{D}(A_{m})) \longrightarrow 0$ $0 \longrightarrow \mathcal{O}_{x}(2mA_{i} - D) \longrightarrow \mathcal{O}_{x}(2mA_{i}) \longrightarrow 0$ $\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad$ 15 in the Imye of the Verbal map PCm) & ho(X, Ox (2m A,)) - ho(X, Ox (2m A, -D)). $P(m) \leq Q(m) - Q(m-1)$ Q'(m).

Theorem 3.1: Fix n, Acs >0. The set of log pair (X/A) satisfying the following conditions: (1) X is projective of dim n, (2) (X, D) is le, (3) $Coeff \triangle > S$. (4) there exists me Z> with vol(X, m(Kx + 4)) < A and (5) Ø Kx+ m (Kx+a) 15 birational. Is loo birationally bounded Proof: $\phi = \beta_{K \times + m(K \times + \Delta)}$ is a morphism $X \xrightarrow{\beta} Z$. $|K_x + m(K_x + \Delta)| = |M| + E., M = p^*H.$ Vol (Kx+m (Kx+d)) < vol (Cm+1) (Kx+d)) < zn A G= pm Drod. BE | LKx+ (m CKx+21))]. $\alpha = m_{2} \times \left(\frac{1}{\delta}, 2(2n+1)\right).$ Do = sum of comp of \triangle and B which are not confraded by β . Do ≤ 2 (B+A) Compute à (m+1) (Kx+△) - d (B+△) ~a C ≥0. Hn-! G

$$G \cdot H^{n-1} \leq D_0 \cdot (2(2n+1)M)^{n-1}$$

$$\leq 2^n \text{ vol } (X, (1+2\alpha(m+1))(K\times+\Delta))$$

$$\leq 2^n \text{ vol } (X, (1+2\alpha(m+1))(K\times+\Delta))$$

$$\leq 2^n (1+2\alpha(m+1))^n \text{ vol } (K\times+\Delta)$$

$$\leq 2^{2n} \alpha^n \text{ vol } (Cm+1)(K\times+\Delta)$$

$$\leq 2^{4n} \alpha^n A.$$

$$\Rightarrow \text{ only depends on } A, \delta \text{ and } n.$$

$$\square$$